
TECHNICAL REPORT R-43

ANALYSIS OF INJECTION-VELOCITY EFFECTS ON ROCKET

MOTOR DYNAMICS AND STABILITY

By HERBERT G. HURRELL

Lewis Research Center

Cleveland, Ohio





TECHNICAL REPORT R-43

ANALYSIS OF INJECTION-VELOCITY EFFECTS ON ROCKET MOTOR DYNAMICS
AND STABILITY

By ItER_ERT G. HURRELL

SUMMARY

Combustiol_ time tag is treated in a .form that

inctude._ its dependel_cy on injectio_ reIocity, such
dependency being indicated by recent studies. This

generalized.form is used i_ analy._Ts of low:frequency
chamber dy_mmics and combustion in._:tability (ta_ik-

.fed rocket). The theoretical responses and stability

boundarie._ obtained are compared with those given

_,ith the prerious time-lag concept. It i._ concluded

that the injection-velocity effect on the time lag

cannot be neglected in the theory of chamber dynamics
and combustion instability.

INTRODUCTION

In the field of liquid-propellant rocket engines,

there is widespread interest in the theoi T of
combustion-chamber dynamics. In the past, this

interest was generated primarily by the frequent

occurrence of combustion instal)ility. Often
costly and time-consuming development programs

were required for new designs in order to over-

come this destructive phenomenon. At the pros-

(,tit time, although combustion instability is still

of" much concern, increasing attention is being

given to defining the chamber dynamics for control
purposes. This late emphasis on controls results

from the stringent trajectory reqlfirements of
space missions.

The foundation of" existing theory was laid in

1941 when Von Ktfrmtin recognized that a time

lag between propelhmt injection and combustion

was instrumental in combustion instability (ref.

1). This combustion time lag (also known as

dead time) was first treated as being of constant

duration. It. was used in this manner in analyses
by Gunder and Friant (ref. 2), Yachter and

Wahlinger (rcf. 3), Summerfield (ref. 4), and Lee,

Gore, and Ross (ref. 5). Crocco (refs. 6 and 7)

improved the concept by considering the time lag
to be a varial)lc with a duration dependent on

changing conditions along the path of the pro-

pellant in the chamber. For simplicity lie corre-

lated the various conditions to chamber pressure.

Crocco's time-l.lg concept was used in stability
studies by Tsien (ref. 8) and .X[arble and Cox

(vet. 9). At the present time, Croeco, Grey, and
_[atthews (ref. I0) are using this concept of

pressure-dependency to determine time lags fi'om

ex33erimental frequency response. This same con-

cel)t is the t)asis of the extensive theory of com-
bustion instability developed l)y Crocco and

Cheng (ref. 11).

Re('ent developments, however, indicate the

time lag must be treated as a function of injection

velocity as well as conditions after injection.
Studies have shown that the atomization of the

propelhmt is sensitive to injection velocity (refs.
12 and 13). Propellant atomization, in turn, has

long been considered an important factor in

determining the duration of the time lag (ref. 11,

e.g.). Substantiation of this belief is given by
the correlation of engine performance with vapori-

zation in reference 14, which indicates tlmt the

atomization-sensitive vaporization process may

determine the time lag. Experimental evidence

that directly shows the variation of time lag with
injection velocity is reported by Penner and Fuhs

(ref. 15).

The time-lag concept, therefore, is generalized
in the present treatment to include the effect of

injection velocity. This is done by treating the

time lag as being dependent on initial propelhmt

atomization as well as conditions encountered by
the propellant in the chamber; the initial atomi-
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zaiion is considered to be a fimction of injection

velocity. The chamber variables along the padL

of tile propellant after injection are correlated, in
the manner of Crocco, to chaml)er pressure.

Analyses are present ed that show tlle importance

of using the more general time-lag concept in the
treatment of chamber dynamics and co, nbustion

instability. With the gener.flized concept, a

smal|-perturbation equation of the combustion
chamber is derived for a bipropellant rocket. The

eqm_tion treats Ibe range of low frequencies in-

volved in the combustion inslability called chug-

ging. This is also the frequency range of primary
interest in controls work. From the chamber

equation, the transfer functions are formulated,

and the frequency response is presented for pos-

sible sensitivities of the time lag to injection
velocity. The chamber equation is then used in

analyzing the stability of a tank-fed rocket in

order to illustrate the injection-velocity role in

combustion instability.

SY_IBOLS

B mass-t ransfer number

D drop diameter

E initi.d or final level of time-lag processes

F,f rate of time-lag processes

h it@ction-hole diameter, in.

K 7;/2(Po,s-?)
3/ mass of burnt gas in combustion chamber

re exponent in F_D"p"

•n exponent in F'_Dm#" (interaction index)

Po.z tank pressure of oxidizer or fuel

p pressure of gas in combustion chamber

Q injection-velocity sensitivity,

zero (eq. (20))
(r+ l) (3--m)ya (eq. (21))

(3--m)yo_ (eqs. ((22) and (25))

R gas constant

Re Reynolds number

r mixture ratio, wo/w+
Sc Schmidt number

s dimensionless eomt)h'x operator

T gas temperature
t time

U drop velocity relative to gas in chamber

V injection velocity

u,b gas generation rate
_'_e exhaust, rate

wj. fuel rate

w_ total injection rate

u'o oxidizer rate

,/c r U ( t) n_ .... "_
Y )

,,".r-For
1/kl LD(z-F)d 9

z dimensionh,ss time, t/O_
atomization index (D--_V -_)

3 dimensionless frequency of neutral oscilla-

lion, 0_w, where w is angular frequency
A( ) small perturbalions

O. gas residence lime

u gas viscosity
m li<luid density

¢ time lag ((lead time)

r dimensionless time lag, _/0,

Superscript :
(--) steady-state values

COMBUSTION-CHAMBER DYNAMICS

THE TIME LAG

Tile combuslion in a [iquid-propell'mt ro('ket

engine is very complicated and still not fully
un<lersloo<]. Intricate processes such as atomi-

zation, mixing, vaporization, and ehemic.d re-

action take place before the final products of

combustion evolve fi'om the injected liquids.

Although the evolution is ee,'tainly gn'adual in
boll, lime aml space, a treatment of the phe-

nomenon in its gradual ,mlure is not warranted

hy the present knowledge of the processes involve(t

and of the chamber conditions affecting these

processes. A working model is el)lathed, there-

fore, in the manner of previous authors by con-
sidering small fraclions of the final products Io be

generated in a discontinuous manner. That is,

the gradual evolution of small elements of pro-

pelhmls into a partMe of burnt gas is rel)htced

by a sudden conversion. The time interwfl be-

tween injection and the sudden conversion is

callc(l time lag. In general, different particles of

1)urnt gas will have different time lags, and the

time lag of each will be a time-dependent quantity.
Nevertheless, considerable simplifical i<m is

achieved in that the eompli(,ated combustion

process is represented merely by a distribution of

gas SOllrees.
It has been shown (,'ef. 11) that the rate at,

which the burnt gas is generated from these

sources is dependent on the rate of clmnge of the
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associated time lags. It is necessary, therefore, to

consider the manner in which the time lag varies

before proceeding with the analysis of the chamber
dynamics.

Previous authors have assumed that the vari-

ations in the time lag are caused only by variations

in tile physical factors encmmtered t)y the pro-

pellanl after injection into the chamt)er. The as-

sumption is tacitly contained in the equation

' f(t')dt'=E(t)=eonst. (1)
-a

used to defim, the dependency of the time lag ,r on
the physical factors. The integral, which is tuken

over the path of the propelhmt element from ttle

time of injection t'_t--cr to the lime of burning

t'=l, represenls the accumulation during lhe time

lag of the processes determining its duration. The

process rate f(t') is influenced by the chamt)er

variables Sl.leh as pressure, temperature, and rela-

live velocities between propellmlt and gas. The

constant rigllt-hand member E(t) represents the
final level of the processes, that is, the level to

which they must accumulate before the sudden

conversion into burnt gas. The equation, of

course, is sufficient only with the assumption that

the initial level is constant, lhe general form being

E(t--_)+ f(t')dt'=E(t)=const. (2)

where the term E(I a) represents the level of the

processes, or the condition of the propellant, at

the instant of injection.

In the following analysis, this assnmption is

dropped, and the condition of the propelhmt at

the instant of injection is treated as a variat)le
with an effect on the duration of the time lag. To

do this quantitalively, of course, requires t]mt the

initial (and final) comlition in equation (2) be

defined explicitly.

The more explicit equation is obtained in the

following manner. The liquid drop is treated as

ttle elemental unit of propelhmt, and it is postu-
lated that its actual combustion can be adequately

depicted by a time-lag approximation eontrolh'd

by tim lifetime of the drop, or a portion thereof.

In other words, the sudden conversion to burnt

gas, tile end of tile lime lag, is considered to occur

when the drop has been reduced to a definite size.

(For bipropelhmts, lhe species to be treated is the

3

one tmving longer drop lifetimes.) The rate at

which the drop size is reduced at each instant

along its path can be expressed by lhc pro-

portionality

d D 3 m

where F represents a function dependent on
chamlwr variables. The relation can also be

xn'itt en as

3 - m

dr' =f (3)

with tim proportionality constant being absort)ed

in the new function f. By specifying the size of

the drop at the end of the time lag as D(t), tim

duration of the lime lag is defined from equation

(3) as follows:

f DDa- m (t) f t
a_,,,(t__) dO a..... ,,,-, f(t')dt' (4)

which, upon integration of ttle left-hand member,
becomes

t
IT-m(t--_r)+ f(t')dt'=Da-m(t) (5)

It should be noted that the treatment result-

ing in equation (5) does not necessarily imply

the aet.ual combustion process to be one of "drop-

burning," in which the w_pors issuing from the

drop are immediately burned. The model suf-

fices, rather, if ttw vapors formed ahmg the path

of the drop a ecumuhtte and burn at. a later time;

the only condition being, as previously stated,
thai the actual combustion can be adequately

approxinmted by a discontinuous transformation

taken at a definite drop size. The model may

not be sufficiently general, of course, for some

applications. More generality wouht be obtained

by treating the time lag as the sum of tim drop
lifetime and a gas-phase delay, each with its own

process rate. For high-frequency applications, in

which even small delays are significant, the more

general treatment appears essential. In fact, the
recent work of Croceo, Grey, and Ilarrje (ref. 16)

shows conclusively that small delays highly dc-

pendenl on chamber pressure are inslrumenlM

in high-frequency combustion instability (scream-
ing). Such delays are probably in the gas phase.
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For low-frequency applications, sueh as those

ill tile later sections of tile present report, tile

general formulation may be required if there is

considerable combustion delay after tile drop

vanishes. It is not deemed appropriate, however,

to complicate the present work 1)y this generaliza-

tion since interest is presumed to be centered

primarily in ro('kets with good liquid phase mixing.
In proceeding, l|u, refore, tile rate of change of

time lag is flmnd from equation (.5) to be

de l (tiT)a-m f(t)--f(t--a)
dt j(t--a) (it (t--<r) ,f(t--_r) (6)

whi('h, for the small-perturbation treaiment, can
be written as

do" 1 dD a-m

dt-- f(t-'5) dt - (t--_)

4f(l) I-%f(t-- _)

](t ](t-7)
(7)

The process rater ('an be expresse(l, in the manner

of Croeeo, as

where i_, the interaction index, includes the effects

of otlwr chamber variabh,s under the assumption
they can be correlated to pressure. Tit(, rate

perturbation, therefore, is related to the pressure

p,,rturbation by

j P

and, with lmiform pressure in steady-state,
equation (7) becomes

dz 1 ,1D _ '_ (t--_)--n .Xp(t)-.xp(t-7)
d--i--=-- 7 (It )5 (8)

3_n expression for the rate ,7 Nan be obtained by

integrating equation (5) for steady-state condi-

tions; substitution into equation (S) yields

d<_ 7 (1D 3 '_
(t-;)

_=-D3-=(t 7)--D >'(t) - dt

Ap(t)--5p(t--7) (9)

can be expressed for the small l)erturbation
treatment as

D(t--_) _ V-fft--_)

Using this expression with equation (9) gives the

following equation relating the rat(, of change of

time lag to perturbations in injection velocity

mid ('hanlber pressure:

(1o- (3. d.2,V [_m)yc_7_. - -- (t--7) --n (t)
t-k, =--" -- (tt V

L,--I

7( q (,0)
_v]lere

.7 °
kD(t a)J

It should be noted that Ill" pressure perturbalion
Ap(l) appearing in this equation is a function of

time and position in general. The position de-

pen(hmee, however, is negligible fl)r frequencies

that are h)w in comparison with the characteristic

frequencies of wave propagation in the ehand)er.

As previously stated, these low frequencies are
the only ones considered ill the lat,,r sections of

the report.

In general, a precise analytical evahmtion of

lhe eonslanls in equation (10) does not appear

possible at the present time; the knowledge avail-

able concerning the alomization and eombuslion

processes is too limited. Some insight, however,
regarding approximate values can be gained for

particular eases. For vaporization-limited com-

bustion, Spalding's (ref. 17) modification of the

Fr6ssling evaporation equation (ref. iS) offers

approximate values of m and n. Tit(, modified

equation can be written as

dD a 12 ln(l+B) D(1+0.276 Sd/aRe _/')
(lt -- o_u Sc

from which the exponents for the relation

d D a
dt' _ D_P"

arc found to be

1-t-32 0.276 Ncl"aRel/a

I +0.276 Sd/aRe 1/2-

The <tependence of initial drop size on injec-
tion vehwity indicated by references 12 and 13 _-g _,,21 (1 -t &p/_) .Xp/p/

I
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when the gas viscosity u, lilt, transfer numtwr B,
and tile Sciiniidl numt)er Sc are treated as con-
sllulls. Since the ,_,eilln]dl numl)er will 1)e of the

order of 0.7, it can readily be seen fronl die ex-

pression for the exponent 1)'t lhal its viihle will be

ll.t)Ollt 3t2 for high Reynolds liumt)eJ' tie)iS }}16).

Ullder like oirellmsll/nces, the inleraelion index _

will liave a value no,qr _.:+,provided the pert urbal ions

in relalive drop w'locily and gas lemperaluro (or

their not effect) are small in comparison to lho

perluri)aiion in pressure. The evaporlilion equa-

tion, of course, musl be Irealed in more detail 1o

obhlin an ilpproylnlato value of Ilia sleady-shile

time lag 7. The nlore delaih,d <'lpproaeh was
used in <'al<'ul'aiing die droplet hislories presenied

in reference 19. These hisiories, whieli are given

for several propellanl combinations, offer a con-

yen)eat means of estimating tile steady-stale

time lag. If Ihe lime lag is assumed to include

most of the drop lifetime, l]le quantily y appearing

in equation (10) will ]ulve a va]ue near unily.

The empirical eqnalion of reference 13 for the

mean drop dilinieler produced by two impinging

jets can be used in evalui/ling tile parameter o_
for injectors of this type. _'itli lhe assumption

of very low gas velocity in tile region of impinge-

meat, the equ,qtion to use in

D/D-- 2.64 _,DV+ 0.97 hV

where hole dianieler ]_ and drop diameter D are

expressed in incites and injection velocity V is in
feel per second. Front this eqllilliOil, the fol'iillllll

for e_is found to be

0.97 hi=+ 1.32 -_/_

0.97 t,_'_ 2.64 _/D-'_

Accordingly, the parameter o6 wlli('tl is terme(1 the

alonliziliion index, will h<qve values belween

and unity, (tel)ending on liie magnilude of l|le
i

producl ]*'V. For lhe usual ra.nge of ][V (J/ [o 7),
the formula indi(.ales tilt, atonlizalion index will

average at)out ,a.2/ Tilis in quickly ascertained

from the plot of tile fol'nltilll hi figure 1.

If tiw i(lomizalion index o_ls pul equlil lo zero,

the term oolllaining the ])erlllrliallon in injection

velocity disappears from equaiion (10), and the

equation is reduced to the one used t)y previous

alitliors. _ueh a procedure, of course, is lllllllt-
mount to assuming initial drop size to be inde-

0J _ ''--I'--'_ _
"10

= S.9 o .6 _ . 1 ---

.i

2 4 6 8 I0

h V, (in.)(ft/sec)

Pml-nE 1. Variation ofatoniiz'ltion indexawith pro<hict
h'I" of hole diameler and injeclion velocity for two
impinging jets (based on empirical equal)on (if rcf. 13).

pendent of injection velocity. In view of tile

otlservalimls of references t2, 13, nnd 15, |iowever,

this is no! n generally valid assumplion, and the

eompicie equation must i)e tlSed [o define tile ralo

or change of tile time Ilia'. Ii is the inlenl of the

Poliowing mialyses to show lhe imporlanl role lho
injeeiion-velo<'ity tern-i has in tile theory of (.ham-

her dynamics and t'ombusl ion inslal)ilil3". 111order

it) eml)llasize the rehllive effect of neghwiing this

lerm, the analyses will be mn<le with several

simplifying sl il)ulal ions.

CHAMBrR EQITATION.ANDTRANSFER FUNCTIONS

:is twoughi oui in the foregoing section, the

lime-lag eoneepl provides a ('ol3venienl eonli)us-

lion niol]el conslsling of a distril)ul ion of 1)ili'iit-gllS

so)trees. As 11 conseqlleill'e, the prot)hqn of

eliaml)cr dynamics becomes one of a gas-flow
system fed l>y these sources and depleted 1)y the

flOW t]ll'Ollgh tile nozzle. In accord)thee wilii tim

prineiph, of mass oonlinuily, lhe excess of the

feeding rlile over lhe depiclion rllle mllsl ill each
hlslanl be equal to llie rate of ehlu/ge of the mass

within. In lernls of small frllt.tioiia] perlili'lili-

lions, lhis Call be expressed llS follows:

Au't, ( _tt_ d A.1 [
,'=_ -'u,=7 (zJ=,T _ (z) (l l)

where tile dimensionless time z in the rlllio of ltie

ael tlal time to the average slcady-silil e reshlenoe

time of the gas in the (.hanll)er. This InS

residence time 0_ of Collrse, is equivalenl to
I

.1/7, <qnd (.all |)e evahillled h 3" muhil)i.vin I lho
i

el)amber volllnle by tile fa('tor _/K,RT'.

The perlurlmtion kwU_'o in the feeding, or

gas generlllion, rate represents the hitegTated

effe('t ()f all Ill(' sources; the eontril)ution of ea('h

source is dependent Oll the l'ate of (.}lange of its
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associated time lag. Tile general problem in-

volving nommiform time lags is rather involve(l

all)egraically, but can l)e t,'eated t)y using the
methods of reference l l. For the present pur-

pose, however, the time lag is assumed to be the
same for all the sources. With this simplification,

the perturbation in the total rate of gas generation
can be related to the lime lag in the follmving

manner (r(,f. 11):

'_wb (z) AW_ @--7)- dr
_ = w-_- d z (12)

where the time lag is expressed in the dimension-

less form r, which is equiwdent to a/Og. By

using equation (10) and considering a bipropelhml
rocket in which the fuel drops have the longer

lifetimes, the rate of change of the time lag is

given by the equation

dr (3--m)ya7 d AW:
dz-- _ _- (z--7)

--n,E_ (z)--_ p (z--7).'] (13)

where, at each instant, the pressure is considered

uniform throughout the chamber for the range of

low frequencies being considered. The fractional

change in the total injection rate can be separated
into its oxidizer and fuel components by the

relation

AW_ _ r Aw. 1 AW:,

_t=', (z--r)=rYT1 _-'o (z--7)q r+l _.': (z--¥)

(14)

Upon combining equations (12), (13), and (14),

the equation for the perturbalion in the rate of

burnt-gas generation is fmmd to be

AW_ (z)=/ _wo 1 .Sw,. (z--r)_57_ 1 _o (z--7)-t r+ 1 _f

d 5w:
+(3-- m)yc_7 (_ _ (z--r)

ap (z-7)_+,, [_ (z)-_- 115)

In keeping with the intent of the present

analysis, the flow leaving the combustion chamber
is treated in the follox_qng simplified manner.

First, it is assumed thai the entropy perturbation

at the nozzle entrance is negligible. This as-
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sumption can be made with reasonabh, confidence

for many applications where the adial)atic flame

temperature varies only slightly with mixture

ratio in stea(ly state. With ibis assumption, the

dynanfics of the unsteady nozzh, flow can be
accounted for in the h)w-Dequeney range simply

by including a portion of the nozzle volume in the
evaluation of the gas residence time (rcf. 20).
The nozzle flow, therefore, is treated as if it were

steady. Finally, the specific-heat ratio is con-

sidered 1o bc unity. Accordingly, the perturba-
tion in the flow of burnl gas from the conflmstion

chamber is given by the equation

aw__,w_(z)=A_ * (z) (16)

For a more detailed treatment of the exhaust

problem, the reader is referred to the work of

Cheng (ref. 20), Tsien (ref. 21), and Crocco (ref.
22). (Crocco's treatment is also presented as an

appendix in ref. 11.)
The simplification made in regard to the mass-

perturbation term of the continuity statement is
as follows. It is assumed thai at each instant the

integral over the chamber length of the entropy

perturbation is nearly zero and can be neglected.
The perturbation in the total mass of gas within

the confl)ustion ciiamber can be obtained, there-

fore, from the equation

A_/I (z)=5__ (z) (17)

where the specific-heat ratio is again considered

to be unity. A treatment retaining the integrated
entropy change is not overly complicated if it is
first assumed that the eomt)ustion is concentrated

in a front near the injector face (ref. 11). Such a

treatment, however, exaggerates the enlropy
effect, if the actual combustion is spread at all in

the axial direction.

Upon combining equations (1,5), (16), and (17)
with the continuity expression of equal iml (11),

the comtmstion-ehamber equation relating per-

tin'battens in pressure and propellant flow is found
to be

d Ap AI, +n_(z_r)=rfZAwo --d-z _ (z) + (1--'n)_ (z) ---- 1 _oo (z-- r)

1 A%, _, .... _ 11 Aw:
-t r+l Dr (z--r)_-ia--m)Yar-dT_ (z--7)

(18)
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Since lhe solutions of equation (18) are of the

type e "z, tile cqualion may also be written in

operalor form as

_p r A_G, -Ts
e

[t+s--n(1--e-_)] _-=r-_l we

+r+l [14-@+1) (3--m)yc_Tsl e-'* (19)' Wl

wher(, the dimensionless operator s is, in general,

eompl:_x. The factor rend(wing the operator
dimensionless is, of course, the gas residence lime.

From equation (19), tile following transfer
functions of the combustion chamber can be

writton:

(ff,,7) ' (20)A,_t i_ -- =--_ l+s--n(l--e -v*)
_.' -o_ 'u/can,t. w t F •

( _p/-_ _ _ 1 e _,_,l+@+l)(3--,m)y_TSe_;O
\&w/wz/ ..... t. % r-t- t l+s--n(l--

(21)

--_lJ ot tCv/conet, r _ A'l12//tt_ f/eonst, r

1@ (3--m)ya¥s
l +s_n(l_e__9 (22)

7

Despit',, the simplifying assumptions usc(t in the

derivation, it is believed these transfer functions
describe the predominant form of response for

many applications and thus are useful approxima-
lions for controls work. It shouht be remembered,

however, that in the present report the fuel drops

are considered to have lifetimes longer than those

of the oxidizer drops. If the situation is reversed,

equations (20) and (21) must be revised as follows:

1+ r+! (3-,_)v._,_

\Awo/-wo/eo, st. wj.=r+_ 1+s--n 0 --e -_")

_p/_ _ = 1l e__. 1
Aw/_z/ .... t.,,o r+l l+s-n0-e-')

In the controls fieM, it is often convenient to

consider dynamic relations in block diagram form;

hence, a block diagram representation of the

dmmber dynamics is given in figure 2. Equalion

(19) is portrayed by the portion of the diagram
drawn in solid lines. The term

l+s--7_(1--e ->)

.____ _._._-
+

Awt i

.___ (s} I%

Awo
(s)

ml |

I a.,o /ap I

I -_-o(')/7 -('_ I
I j

f--
Aw_ /--_(s){ -_F('I

l+s

n(I- e-_sl F

1

I

I

I
I
i
I
I

FI(]URE 2.---B]oek diagram of chamber equatiOn (propellant system feedback shown as dashed lines) "

534118--60_2

(s)
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of lh(' equation is broken down into an equivalent

closed loop in order to emphasize tile positive
feedl)aek that exists within tilt, combustion

(qmmber. This feedback action, of course, results

front tile sensitivity of tile time lag to (']mmber

pressure. Instability of this internal loop with

constant injection rat,., is treated extensively in

refer.race II under the desig'nation "intrinsic

instability." In practice, of ('ours(,, low-frequency
combustion instahility (chugging) also involves

the feedback paths provided by lit(, fuel and

oxidizer systems. These external feedbacks,

which are negative by virtue of file transfer

functions involved, are indicated by the dashed

lines in the diagram.

FREQUENCY RESPONSE

When the ehanfl)er transfer functions (eqs. (20),

(21), and (22)) are normalized to unity gain, they

van be considered in the general form

e- _ 1+ Q7._"
l+s-n (1-e -7'_)

where the param:qer Q is defined according to the

following table,:

Normalized transfer function

--,"\_i .... t. "7

(r+ l) \ awd_:/ .... t. ,%

Q

(r+ 1) (3 -m) ya

(3-- m) ya

plied by the gas residence lime. (In using tit(,
computations presented herein, it is well to note

that the imposed frequency limit can be expressed

approximately as f_<<l/Maeh number.) The range
of values shown for the sensitivity paranwter Q is

believed to be a realistic one. Consider, for ex-

ample, a combustion process conforming to the ap-

proximate values previously discussed for the quan-

tities m, y, and a (3/2, I, and 2/3, respectively);

the value of the sensitivity Q wouht then be unity

for the transfer runetio,,s (@/D

( ,_,.,_p/_N} anti even hvl|'g e'' fO]' ' '| e tra']sf(_l' f[|nc-

( AP/-_ ") All the transfer func-
tion (r+l) \_;_! .... ,. -o

tions, of course, wouhl yield the curves shown

r-t-l( APFP "_
for the zero-sensitivity, case --r \'.5.wo/_o/eonst. ,_:

if the injeet ion-v(,loeily effect had been negh'cted

in the time-lag eonceltt. These curves, therefore,
van be used as a basis of comparison for the more

general time-lag tenet'p(,

From this information present ed in figures 3 and

4, it can be concluded that the injection-velocity
effect on the time lag is an important factor to

consider when treating the dynamics of the com-

bustion chamber. This is evident upon noting

tit(, strong dependence of tlt(,frequency response

on the value of the injection-velocity sensitivity.

At the higher values of the sensitivity parameter,
both the amplitude and phase curves are con-

siderahly different than those for a sensitivity of
zero. It shouhl lie no/iced, too, that the (lifference

becomes greater with increasing lime lag.

The parameter Q will be referred to as the

"injection-velo('ity sensitivity" sin('e its magnitude

determines to what extent the response will be

affected by the perturhation in inje('tion velocity

for a given wdue of time lag and interaction index.

The frequency response defined by the general

transfer function for various values of Q and 7

is presented in figures 3 and 4 at the end of this

report. (.The value of n is kept constant at 0.5 in
these figures.) The amplitudes (fig. 3) and the

phase shifts (fig. 4) are given as functions of the

dimensionless frequency of neutral oscillation 5.

This dimensionless frequency, of course, is equiva-

lent to the dimensional angular frequency multi-

STABILITY CONSIDERATIONS

For an analysis of combustion instability, the
chamber equation (eq. (18)) must be considered

together with appropriate equations for the fuel

and oxidizer feeding systems. An equation for

propellant-feed systems that can be applied to

either pump- or tank-fed rockets is presented in

reference I I. This equation, with certain simpli-
fying assumptions, takes into account the resist-

ance, inductance, and capacitance of the feeding
system. In stability evaluations of particular

systems, in which these effects are specified by

given constants, the equation can be used with-

out difficulty. A general treatment, however,
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becomes very involved when the complete equn-
lion is used.

Therefore, in order 1o show without undue com-

plication the relative imporlance of the injeetion-

wqocily effect, a siml)le, lank-fed s.ystem "with

negligible capacitance and induchmce is assumed

for both propellants in the present treatment.

Such a syslem represents the limiting case a p-

proat'hed by lank-fed rockets with short lines.
The simplified equations for the fuel and oxi¢lizer

fee(ling systems ran be written as follows (1)uth

tanks have the same pressure) :

_,V] I e r e

"x_;'z=--- K -W,_ (23)
_Cf p

AWo Ap

_0-- K=- (24)P

2(;'o,f7))

The eliminant of equations (18), (23), and (24)

yMds the following chara(.terislic equation"

14-s-t_(1-e-;Q4-Ke +'(t-1- QTs)- 0 (25)
"wt i ere

Q 13- m)y_

q'he charaet erist ic equat ion det ermines lhe bound-

ary between shd)h, and unstal)le oscillation when

the real pnrl of the operator s is zero. The oper-

ator, lherefore, is set equal lo '/I_, where fl is the

dimensionless frequency of neutral oscillution

By separating the real and imaginary paris of

equation (25), two real equations are obtained:

1271(# sin 75 =n-- I -- (n +hT) cos 73"1,
(26)f

Q7/¢# cos 7_---_÷(/_÷IQ sin 7_ J

Equations (26) represenl [he stabiliLy boundary

in paramel Hc form. Because of the transeendenla|

nature of these equations, a single equation of the
stal'Jilily boundary cannot be obtained. The para-

metric equations, however, can be expressed in
more convenient forln.

Upon squaring and adding equations (26), it:
can be ascertained that

(QTK#)_-=#_-+ In,-- I)-_+(z_+/0 2

--2 (_+/Q _--1+# tan T# (27)
_'1 +tan 2 T¢3

Another equation is apparent after dividing the
firs! of equalions (26) by the second:

n-- 14-3 tan T3=n+K (28)

Introducing equation (28) into equation (27)

(and rearranging) gives lhe following equalion for

T in lernls of # and the system parameters:

T= _ V'_2+ (_- 1)2_ (.4- [()
Q[,2_ (29)

where the square reel is negative if, and only

if, lhe parameter Q is negative. The second

rplation required belween 7 and fl is given by

equation (28), which c_m 1)e put in the quadratic
form

[@ + h')'--#-']tan 27#--2 @-- I)# tan T#

4- In+ [O-+-- (,-- 1)-"--0 (30)

From equation (30), it is found tim(

tan 7#-- (n--l) B- (n4-/T) ¢f124-(n--1)2--(ng tC) 2
#:- In+/19'

(3l)

bears lhe sign
for 7 gives the

where the square reel again

of Q. Solving equation (31)

equat ion

1 1
7=/_ [a_-- tan-

(,n 1)fl+ O,÷I<) x'B_+(n_l)2--(n4-IC)q (32)
:- @+ h") _ J

where tit(' Imneipal value of the archmgenl is used

( 7r _, _')--5<tan (_ and a is an integer. For the

present, purpose, consideration is limited to lhe

fundamenhtl oscilhttory mode, that is, the mode

corresponding to the smallest time lag satisfying

equation (32); thus, the integer a, is given a value
of unity. The stability boundary, therefore, is

expressed by writing equations (29) and (32) in

lhe following simultaneous form:

T-- 4- _'8z4- 0- 1 )'-'-- ('n+ICl_ )
QK# L

i ,[ ,
r=/_ 7r-- tan (33)

(_n-1)#:k(n,+K)#:-+(n l)_---(,_+K)!
_--- (.÷h_ _
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Equations (33) can be solved directly for two
special cases. First, it is readily seen that, wl_

the lime lag is'constant (Q=0,_-_ 0); t_w=sol_
is as follows:

1
7=-_ (rr tan I I3) (34)

wllere

Tile second case is thal of a time lag dependent o_n
chamber pressure but indcpendcnt of inj(,etion

w,locity (_ 0, n ¢0). The folh)wing'solutiml i's
then obtained:

_vhoro "

B _'(n+t()-'--(n--1)"

#1.,
2

rD

E

"6

=.

¢j

&.6

I I t IInteraction
index,

.4 .8

i t !

n

i

1.2 1.6 2.0

Injection-velocity sensitivity, 0

FI_;IItE 6. Effect of imeraetion index n on stability

boundary. Pressure drop (Po, I---P)/-P, 0.J.

For the general case, equations (33) were solved
numerically by ilcrative proc'.,dure wifll a high-

speed digital computer. The stability boundaries

obtained are presented in figure 5 at. the cml of

this report. The critical wflues of the time lag r,

tlmt is, the values giving neutral oscillation, are

shown as functions of the inject ion-velocily sensi-
tivity Q for various wdues of fl,,,,l system pressure

drop (Po.i--7_)/'_. This pressure-drop parameter,

of course, is equivalent to the quanlily 1/2K.

Separate charts are Wen for different values of
the interaction index n. The unstable domain

aassociated with each stability boundary is repre-

senled by the region of tile figure above the

bomulary. Curves of constant critical frequency
,8 (dashed lines) are also given in the charts.

The conclusion drawn from figure 5 is that the

injeelion-vcloeity sensitivity cannot be neglected

in the theory of low-frequency ('ombustion insta'-

bility. As shown in the figure, the ('ritical time

lag for a given interaction index an(I pressure drop

is highly dependent on the magnitude of the
injection-velocity sensitivity. The influence of the

sensitivity parameter Q is sho_m to be generally
destabilizing; however, it is also apparent that

small vahles of the parameter 0 can be stabilizing.
Comparing the three parts of the figure shows that

the destabilizing effect, of the larger sensitivities

is _m'eat er at the smaller values of interaction in(tex.
This latter obserwltion is more evident from

:figure 6, where, for a constant pressure drop,

stability boundaries for different values of inter-

action index are sho_m together. This figure also
shows the influence of tile inleraction index to be

small at the higher values of tilt, injection-velocity

sensitivity.

In the fimfl figure (fig. 7), tile critical curves

for an interaction index of 0.2 are given for

,-, , .S:)_/
o 1.2 l 4 ....

Pressure drop for 4/1.0 uncondilionol

,_ stability forO=O_± /_7e,,_..8 "---" .... "r-'--

__ /

Oi .2 ,4 .6 .8 I 2 4 6 8 IO
Dimensionless time log, v

FIGrnE 7. Effect of injection-velocity sensitivity Q on

unconditional stability. ]nteraction index n, 0.2.

l 4 ..g4q-.z-

.._+

_ lion-.

velocity
sensitivity,

constant values of injection-wqocity sensitivity

with the pressure drop and time lag as ordinate

and abscissa, respectively. With this low value

of interaction index, there is, according to reference

11, a value of pressure drop large enough to make

the system unconditionally stable, that is, stable
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for all values of time lag. The criterion of reference
11 for unconditional stability can l)e written as

For an intera('tion index of 0.2, the criterion yields
a value of 0.83 for the pressure drop. This wfluc
is marked in figure 7 by the dasiwd line. Since
the line is crossed by s/ability boundaries, it is
evident that the criterion is not sufficient with tile

generalized time-lag concept. In fact, equation
(29) indicates that unconditional stability does not
exist [for injection-velocity sensitivities other

than zero. This can be shown upon writing the
equation as fClows:

1-- (QTK) 2 (36)

Equation (36) detern:dnes the following two
conditions having no real frequency of neutral
oscillat ion :

(1) K<l--2,, and K< _7 (n<l)

(2) I(>1 2,, and h'>l_7- ,Q-

The first condition is the criterion for stability
(the second for instability). In terms of pressure
drop, it is expressed as follows:

" P,,,:_--_ > I " I "- 1I_-I

The criterion, although sufficient for stability,
does involve the time lag; the stability, therefore,
is not unconditional.

CONCLUDING REMARKS

In conclusion, it is important to recall that the
time-lag concept used herein was introduced
because previous studies indicated a dependency
of combustion time lag on injection velocity.
The purpose of the present study was to show the

importance of using this more general concept
when treating chamber d.vnamie._ and stability.

The analyses made with tile generalized concept
of time lag have shown that; chamber responses
and system stat)ility boundaries can be greatly
affected in the low-frequency range by reasonable
variations of the time lag with injection velocity.
It can be concluded, therefore, that the injection-
velocity effect on the time lag is an importunt
factor to consider in the theory of ,.hamlwr
dynamics and combustion instability.

In view of this conclusion, it can be stated that

information concerning the relation of drop size
to injection velocity is essential for the accurate
prediction of rocket dynamics and stability.
Investigations, therefore, shouhl be conducted
to provide this informat ion for the various injector
types of interest.

LEWIS RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CLEVELAND, ()Hit;', April 2,_, 1959
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FIGURE 3. Continued.

(e) Dimensionless lime lag _', 0.8.
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YmuaE 3. Concluded.
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8

4

0 .2 ,4 .6 .8 1.0 1.2 t.4 1.6 1.8
• Injection-velociiy sensitivity, 0

(a) Interaction i_de:_ n, 0.5.

FIOURE 5.--Stabilily bou.darie.', of tank-fed rocket with negligible f_cding system i_ductanee and capacitance.
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28

0 .2 .4 6

FI(:IUB.E 5.--Continued. St'tbility bomidaries of taak-fed rocket, with uegligible ft_xling system inductance and capacitance,
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FmURE 5. Concluded.

.4 .6 .8 1.0 1.2 4 1.6 1.8

Injection-velocity sensitivity, 0

(c) Inter'teflon illch'x n, 0,1.

Stability boundaries of tank-fl'(t rocket witt_ negligible fe_,ding .,ysh,m induetaHee and capacitance.
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